If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17m^2+19m+2=0
a = 17; b = 19; c = +2;
Δ = b2-4ac
Δ = 192-4·17·2
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-15}{2*17}=\frac{-34}{34} =-1 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+15}{2*17}=\frac{-4}{34} =-2/17 $
| -8u+9=17 | | 4x3+2x=36 | | y=0.8(1-0.2)y+200+400+280-0.3(0.2(1-0.2)y) | | 2x+4=7x= | | X+2x^2-80x=180 | | -6-3/8x=9 | | 94+(5x-14)+(3x+4)=180 | | 31=3a | | 10x-15=45-6x | | 11x(2x-15)=180 | | 8-m=10 | | 2x=36-6 | | 8(3w+6)=3 | | 9/4x-1+5/4x=7 | | 0.87w=6 | | -2=m/7-8 | | k-7=22 | | 3(10x+4)=8(3x+6)= | | 9x-15=45-6x | | x*2+24=180 | | 7=9/4x-1+5/4x | | 1=-7+2k | | 10(3/2+3/5x)=31+4x | | Y=5x-7 | | -6u+2(u+6)=8 | | 4(x-6)=-x+8 | | 9x+6=8x+6= | | (2x+5)+(x+17)+(3x-16)=180 | | x/9+13=-4 | | -1/5x=-2/5x+6 | | 4-5(x+1)=-3x-3 | | x2+24/9x=20/9 |